MODULE 3: GRAPHING

"The trouble is, you think you have time." - My Homie Buddha

3.1 & 3.2 GRAPHING BASICS

 Standard form of a linear equation is ________.

 An equation in two variables, is an equation for which every ________ is a pair of values.

 Given an equation such as x + y = 5, there are an ________ number of solutions.

 To simplify writing the pairs that satisfy an equation we use ________ notation. An example is (_______, _____).

 x-coordinate: _______ or _______ variable.

 y-coordinate: _______ or ___________

horizontal line is called the ______.
vertical line is called the ______.
To graph a point, start at the center, called the ______.

Solutions of a Linear Equation

Determine if each ordered pair is a solution of: $2 \times - y = 10$

a) (2, -6) b) (10,-10)

Ex. Complete the table

×	У	(x,y)
0		
	0	
3		

If]	Ιç	give	you	X	then	you	give	me	·	
------	----	------	-----	---	------	-----	------	----	---	--

If I give you **y** then you give me _____.

The coordinate when \mathbf{x} is 0, such as (0,y) is called the

The coordinate when y is 0, such as (x,0) is called the

Forms of Linear Equations

y = m x + b: _____

"m" represents the _____

"b" represents the _____

Words associated with slope: _____

Words associated with y-intercept: _____

Homework Checklist

□ Section 3.1 & 3.2 Graphing Basics

3.3 - 3.5 GRAPHS, SLOPES AND POINTS

x-intercept: _____

y-intercept: _____

Note: Good points to use when graphing are x and y intercepts

x-intercept: plug in ______ for the y value
If you want to find x, then you plug in for ______.
y-intercept: plug in ______ for the x value
If you want to find y, then you plug in for ______.

Ex. Given $2 \times - 3y = 6$, find the x-intercept and the y-intercept

Ex. What are your coordinates if the x-intercept is 4 and yintercept is -3?

(_____, ____) (_____, ____)

Slope

Slope: _____ represented by the letter m.

When asked about rate I know to solve for the _____.

m = _____ = ____ = ____

The equation for slope is:

m = _____

Given:2 points $(x_1, y_1) (x_2, y_2)$ Solving for:slope (m)

Ex. Find the slope given the points (14, 6) and (4, 13)

Ex. Find the slope given the points (1, 12) and (15, -11)

Ex. Find the slope given the points (7, 4) and (13, 4)

Ex. Find the slope given the points (-8, -5) and (-8, 2)

Reading Slope on a Graph

1. Mark two clear and distinct _____

2. Count your _____ (+up and -down)

3. Count your _____ (-left and +right)

Horizontal lines will always be in the form of _____ = ____ With a slope m = _____

Vertical lines will always be in the form of _____ = ____

With a slope m = _____

Slope Intercept Form

_____ = _____ + _____

Given:slope (m) and y-intercept (b)Solving for:The equation of a line

Ex. Find the equation of the line from the graphs below

Ex. Find the slope and the y-intercept: -2x - 4y = 17 (hint: solve for y)

Ex. Determine the slope and y-intercept

a. y = 2x - 3	m =	_ b =
b. y = 2 - 3 x	m =	_ b =
c. y = 2x	m =	_ b =
d. y = - 3	m =	_ b =

Ex. Write equations to model each situation below:

1. Your down payment was \$2000 and you pay \$300 each month.

2. You are 8 miles from home, and drive 60 mph.

Homework Checklist

- □ Section 3.3 & 3.4 Graphs, slopes, and points
- \Box Section 3.5 Graphs using format: y = mx + b
- □ Module 3: Graph and Graph Information